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Highlights  Abstract  

▪ Epistemic uncertainty brings great risk in 

product reliability design. 

▪ Uncertainty theory is introduced to quantify 

epistemic uncertainty. 

▪ A new belief reliability quantile index is put 

forward for reliability analysis. 

▪ Belief reliability-based design optimization 

methods are proposed using the quantile index. 

▪ The proposed method shows good accuracy 

and efficiency. 

 Product reliability design optimization is affected by epistemic 

uncertainty greatly, which leaves significant risks in product use. In this 

paper, a new belief reliability-based design optimization (BRBDO) 

method under epistemic uncertainty is established to handle this 

problem. First, the belief reliability theory is introduced into the design 

optimization problem, and a quantile index is proposed to quantify belief 

reliability level based on uncertainty theory, through which a rapid 

analysis method called first order belief reliability analysis (FOBRA) 

method is developed. Then, according to the different trade-off 

strategies, two types of design optimization models are established, and 

corresponding FOBRA-based computation methods are also 

demonstrated. Finally, several case applications are studied to verify the 

effectiveness of the analysis and design optimization methods proposed 

in this paper. The results indicate that the BRODO method with the 

quantile index can save a lot of computational time with acceptable 

accuracy and can rationally cope with epistemic uncertainty. 
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1. Introduction 

1.1 Background 

With the development of industry, product reliability has been 

paid more and more attention. In this context, product design 

often requires decision makers to balance reliability with other 

attributes, such as performance, cost, weight, etc., which is the 

fundamental goal of carrying out reliability-based design 

optimization (RBDO).  

Generally, since the product reliability is significantly 

influenced by various uncertainties, the quantification and 

propagation of uncertainty have become the core issues in 

reliability design. In existing research and applications, 

however, the mathematical theories utilized for describing 

uncertainty (especially epistemic uncertainty) still have various 

deficiencies such as theoretical inconsistency, which may bring 

design risks in real cases. Therefore, there is a great urgent to 

find a better method to characterize uncertainties, thus 

providing a solid foundation for RBDO. Further, with the 

uncertainty description and the properties of iterative 

optimization, we also need to find a reasonable and efficient 

algorithm to obtain the optimal results. Facing with these 

demands, in this paper, a new belief reliability-based design 
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optimization (BRBDO) method considering epistemic 

uncertainty will be proposed. 

1.2 Literature Review 

The research regarding uncertainty in RBDO mainly include 

two aspects. One of them is the utilization of different 

mathematical models to describe uncertainty, and the other goes 

to the efficiency improvement of optimization in the context of 

corresponding mathematical tools. 

(1) Theories for uncertainty in RBDO 

According to the source and characteristics of uncertainty, it is 

usually categorized as two types: aleatory uncertainty and 

epistemic uncertainty [15]. Among them, the aleatory 

uncertainty characterizes the inherent randomness of the 

objective world, such as the fluctuation of material parameters 

caused by microscopic in-homogeneity. Epistemic uncertainty 

is the uncertainty caused by the limitation of human knowledge 

and lack of information, such as physical parameter information 

obtained from small sample statistics, knowledge limitations 

caused by complex physical processes, etc.  

In existing studies, due to the advantages of probability theory 

in dealing with aleatory uncertainty, reliability-based design 

optimization (RBDO) methods based on probability theory have 

been widely studied and applied, but there has not been 

consensus for representing epistemic uncertainty. In order to 

deal with epistemic uncertainty, Bayesian method is applied to 

reliability analysis and design, which is still based on 

probability theory [26,30]. In literature, some non-probabilistic 

mathematical methods are introduced. Based on fuzzy theory, 

Cai et.al created a fuzzy reliability measurement framework [3]. 

Cremona and Gao applies possibility measure to the field of 

structural reliability analysis [5]. Mourelatos and Zhou 

proposed a possibility-based design optimization (PBDO) 

model under incomplete information [23]. Bae and Canfield 

proposed a reliability analysis method based on evidence theory 

[1]. Mourelatos and Zhou proposed a general evidence-based 

design optimization (EBDO) model [24]. In addition, Ben-Haim 

and Elishakoff used interval variables to describe basic 

structural variables, and proposed a convex model for structural 

reliability analysis [2]. Jiang et al. further established  

a reliability design optimization model based on interval theory 

[12]. Wang et al. used a novel polar transformation to achieve  

a unified reliability analysis taking both random variables and 

bounded intervals into account [27]. Recently, researchers have 

also proposed methods such as reliability-based topology 

design optimization [7], system-level reliability design 

optimization [16], and reliability-based tolerance design 

optimization [10] that consider the effects of uncertainty. 

Although these methods can solve some product reliability 

analysis and design optimization problems affected by 

epistemic uncertainty, they still have various theoretical defects 

[14]. For example, possibility metric does not satisfy duality 

axiom, evidence theory and interval analysis may cause interval 

extension problems when calculating system reliability. The 

establishment of uncertainty theory provides another way to 

deal with epistemic uncertainty in product reliability. 

Uncertainty theory is a new set of axiomatic mathematical 

theory created by Liu, which is believed to better handle 

epistemic uncertainty [18]. Zeng et al. introduced uncertainty 

theory into reliability analysis, and first proposed the concept of 

belief reliability, which was defined as the uncertain measure 

that the system can operate normally [32]. Subsequently, Wen 

et al. further improved the system reliability measurement and 

analysis method based on uncertainty theory [29,33]. Kang 

systematically expounded the framework and research progress 

of belief reliability theory [13]. In terms of reliability design 

optimization, Chen proposed a belief reliability-based design 

optimization (BRBDO) model [4]. Numerous studies have 

shown that belief reliability theory can effectively deal with 

epistemic uncertainty in reliability engineering and 

optimization [11,17,18]. 

(2) Efficiency improvement method in RBDO 

Reliability design optimization is to iteratively find the optimal 

design point on the basis of multiple reliability assessments, 

which often requires a lot of computing resources. Therefore, 

how to improve the optimization efficiency is another key issue 

in reliability design. 

Improving reliability design optimization efficiency can 

generally be achieved in two ways. The first is to improve 

reliability assessment efficiency in reliability design 

optimization. The basic idea of this class of methods is to 

simplify each reliability assessment calculation in the 

optimization process using a specific method, thus improving 
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the overall optimization efficiency. Typical methods include 

first order reliability method in RBDO, the equivalent 

optimization model of PBDO [23], and the method of 

approximate calculation of constraints using interval analysis in 

EBDO [8], etc. The second is to improve the overall 

optimization strategy. This class of methods tends to transform 

the double-loop procedure into a single-loop procedure by 

decoupling the optimization and reliability assessment under  

a specific reliability measure, thus accelerating the solution of 

design optimization models. Representative methods include 

sequential optimization and reliability assessment (SORA) 

method in RBDO [6], the sequential algorithm in PBDO [34], 

and the decoupling strategy of reliability design optimization 

model based on interval theory [22]. It is clear that the practical 

use of these methods is greatly determined by the mathematical 

tools used to describe uncertainty in reliability assessment 

process. As mentioned previously, these methods may have 

deficiencies in uncertainty quantification. However, the basic 

ideas of these methods are still worth learning, which is 

important for us to propose reasonable optimization algorithms.  

In terms of belief reliability-based design optimization, the 

research on improving the optimization efficiency is relatively 

limited. Chen tried to improve the overall optimization 

efficiency by improving the reliability analysis efficiency, and 

gave a deterministic equivalent model of BRBDO when the 

performance margin function is strictly monotonic [4]. However, 

in the general non-monotonic case, the BRBDO model can only 

solve the reliability constraints by uncertain simulation 

algorithm [35], which greatly limits the optimization efficiency. 

1.3 Contribution 

According to the above analysis, it is believed that the 

uncertainty theory is more competitive in describing uncertainty 

in reliability design optimization problems. However, there is 

still not a complete model and computation framework for 

BRBDO problems. In this paper, aiming to more effectively 

perform reliability design optimization for products affected by 

epistemic uncertainty under belief reliability, we will firstly 

propose a rapid analysis method of belief reliability, and then 

establish BRBDO models and computation methods 

correspondingly. The main contributions of this paper are 

summarized as follows: 

1) This paper proposes a belief reliability quantile index 

based on uncertainty theory and puts forward an 

approximate belief reliability analysis method accordingly. 

2) This paper establishes two types of BRBDO models and 

provides corresponding equivalent simplified models on 

the basis of the developed rapid belief reliability analysis 

method. 

1.4 Organization 

The remainder of this paper is organized as follows. Section 2 

will briefly introduce the axioms, definitions and theorems of 

uncertainty theory. Section 3 will propose the first-order belief 

reliability analysis (FOBRA) method and analyze its 

mathematical properties. New design optimization models on 

the basis of FOBRA will be established in Section 4. Finally, 

several cases will be studied to verify the effectiveness of the 

method proposed in this paper. 

2. Preliminary 

In this section, some related concepts in uncertainty theory and 

belief reliability are introduced as the preliminary of this paper. 

Uncertain measure ℳ  is the basis of our research that 

indicates the belief degree that an event occurs. Mathematically, 

let ℒ be a nonempty set, and 𝛤 a 𝜎 -algebra over 𝛤, then each 

element 𝛬 ∈ ℒ  is an event and the uncertain measure should 

satisfy the following axioms [18, 19]: 

Axiom 1 (Normality Axiom) ℳ{𝛬} = 1  for the universal  

set 𝛤. 

Axiom 2 (Duality Axiom) ℳ{𝛬} +ℳ{𝛬𝑐} = 1  for any 

event 𝛬. 

Axiom 3 (Subadditivity Axiom) For every countable 

sequence of events 𝛬1, 𝛬2, ⋯, we have  

ℳ{⋃ Λ𝑖
∞
𝑖=1 } ⩽ ∑ ℳ∞

𝑖=1 {Λ𝑖}.   

Axiom 4 (Product Axiom) Let (𝛤𝑘 , ℒ𝑘,ℳ𝑘) be uncertainty 

spaces for 𝑘 = 1,2,⋯. The product uncertain measure ℳ is an 

uncertain measure satisfying 

ℳ{∏ Λ𝑖
∞
𝑘=1 } = ⋀ ℳ{Λ𝑘}

∞
𝑘=1 ,  

 where 𝛬𝑘 are arbitrarily chosen events from ℒ𝑘 for 𝑘 = 1,2,⋯, 

respectively. 

Definition 1(Uncertainty space [18]) Let 𝛤 be a nonempty 

set, and ℒ  a 𝜎  -algebra over 𝛤  and ℳ  an uncertain 

measure. Then the triplet (𝛤, ℒ,ℳ)  is called an uncertainty 

space. 
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Definition 2(Uncertain variable [18]) An uncertain variable 

𝜉 is a measurable function from an uncertainty space (𝛤, ℒ,ℳ) 

to the set of real numbers, i.e., for any Borel set B of real 

numbers, the set 

{𝜉 ∈ 𝐵} = {𝛾 ∈ 𝛤|𝜉(𝛾) ∈ 𝐵} 

is an event. 

Definition 3(Uncertainty distribution [18]) The uncertainty 

distribution 𝛷 of an uncertain variable 𝜉 is defined by  

 Φ(𝑥) = ℳ{𝜉 ⩽ 𝑥}    

for any real number 𝑥. 

Definition 4(Expected value [18]) Let 𝜉  be an uncertain 

variable. Then the expected value of 𝜉 is defined by 

 𝐸[𝜉] = ∫ ℳ
+∞

0
{𝜉 ⩾ 𝑥}𝑑𝑥 − ∫ ℳ

0

−∞
{𝜉 ⩽ 𝑥}𝑑𝑥  

provided that at least one of the two integrals is finite. 

Definition 5(Variance [18]) Let 𝜉 be an uncertain variable 

with finite expected value e . Then the variance of 𝜉 is 

 𝑉[𝜉] = 𝐸[(𝜉 − 𝑒)2].    

In this paper, the normal uncertain variable is the basic tool 

for reliability analysis method. Here we introduce its 

distribution and corresponding properties. 

Definition 6 [18] An uncertain variable 𝜉 is called normal if 

it has a normal uncertainty distribution 

 Φ(𝑥) = (1 + 𝑒𝑥𝑝 (
𝜋(𝑒−𝑥)

√3𝜎
))

−1

, 𝑥 ∈ ℝ   

denote by 𝒩(𝑒, 𝜎)  where e   and 𝜎  are real numbers with 

 𝜎 > 0. A normal uncertainty distribution is called standard if 

𝑒 = 0 and 𝜎 = 1.  

Theorem 1 [18] The normal uncertain variable 𝜉~𝒩(𝑒, 𝜎) 

has an expected value 𝑒 and a variance 𝜎2.  

Theorem 2 [18] Let 𝜉1  and 𝜉2  be independent normal 

uncertain variables 𝒩(𝑒1, 𝜎1)  and 𝒩(𝑒2, 𝜎2) , respectively. 

Then the sum 𝜉1 + 𝜉2  is also a normal uncertain variable 

𝒩(𝑒1 + 𝑒2, 𝜎1 + 𝜎2). The multiplication of a normal uncertain 

variable 𝒩(𝑒, 𝜎)  and a scalar number 𝑘 > 0  is also a normal 

uncertain variable 𝒩(𝑘𝑒, 𝑘𝜎). 

Theorem 3 [18]：If 𝜉  is a normal uncertain variable 

𝒩(𝑒, 𝜎), then 𝜁 is a normal uncertain variable if  

 𝜁 =
𝜉−𝑒

𝜎
.    (1) 

As for the application of uncertain measure in reliability 

engineering, Liu first proposed the reliability index in terms of 

system life and Boolean states [20]. Later, Zeng et al. named 

this reliability metric as belief reliability and interpreted the 

metric as the belief degree of the system to be reliable [32]. 

Zhang et al. and Kang extended the measurement of reliability 

and proposed the belief reliability regarding performance 

margin [13, 33], which is the basis for reliability design 

optimization of this paper. We hereby give the definition of 

belief reliability in terms of performance margin when it is 

mainly affected by epistemic uncertainty. 

Definition 7 (Belief reliability [32]) Assume a product 

contains uncertain variables 𝜉1, 𝜉2, ⋯ , 𝜉𝑛  that are mainly 

affected by epistemic uncertainty and there is a performance 

margin function 𝐺 such that the product is working if and only 

if 𝐺(𝜉1, 𝜉2, ⋯ , 𝜉𝑛) > 0 . Then the belief reliability is 

mathematically defined as 

𝑅𝐵 =ℳ{𝐺(𝜉1, 𝜉2, ⋯ , 𝜉𝑛) > 0}.  (2) 

3. Belief reliability analysis with performance margin 

function 

Based on the definition of belief reliability, it is studied that only 

the 𝑅𝐵 of products with strictly monotonic performance margin 

functions can be easily calculated via inverse uncertainty 

distribution [32]. For products with non-monotonic 

performance margin functions, 𝑅𝐵  can only be approximated 

using an uncertain simulation algorithm [35], which will bring 

an unbearable computational load in the design optimization 

problem.  

To assist the reliability assessment in design optimization 

and improve the calculation efficiency, this section will propose 

a novel belief reliability index called the quantile index based 

on uncertainty theory and develop a rapid reliability analysis 

method accordingly. The quantile index has good properties 

with a linear performance margin function, so the first-order 

information of the performance margin function is mainly 

utilized in the reliability analysis method, and we call this 

method the first-order belief reliability analysis (FOBRA) 

method. In this paper, the quantile index and FOBRA will be 

established based on the normality assumption, which means 

that all variables of the product will be treated as normal 

uncertain variables with mean and variance sufficient to 

describe all its characteristics.  
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3.1 Belief reliability quantile index 

The belief reliability quantile index (BRQI) is defined as 

follows. 

Definition 8 (Belief reliability quantile index) Let 𝝉 =

𝜏1, 𝜏2, ⋯ , 𝜏𝑛  be an uncertain vector and 𝐺(𝝉)  be the 

performance margin function. The belief reliability quantile 

index 𝛾 is defined as 

𝛾 =
𝐸[𝐺]

√𝑉[𝐺]
,         (3) 

where 𝐸[𝐺]  and 𝑉[𝐺]  are the expected value and variance of 

𝐺(𝝉), respectively. 

Theorem 4 If a product has a linear performance margin 

function 𝐺(𝝉) with respect to 𝝉, the product belief reliability 𝑅𝐵 

and the quantile index 𝛾 satisfies 

𝑅𝐵 = 1 − (1 + 𝑒𝑥𝑝 (
𝜋𝛾

√3
))

−1

.    (4) 

Proof Without loss of generosity, set the linear performance 

margin function to be 

𝐺(𝝉) = 𝑎0 + ∑ 𝑎𝑖
𝑛
𝑖=1 𝜏𝑖 ,   (5) 

where 𝜏𝑖~𝒩(𝑒𝑖 , 𝜎𝑖) . Then, the BRQI can be calculated 

according to Theorem 2, that is 

𝛾 =
𝑎0+∑ 𝑎𝑖

𝑛
𝑖=1 𝑒𝑖

∑ |𝑎𝑖|
𝑛
𝑖=1 𝜎𝑖

.   (6) 

Meanwhile, we have the 𝐺(𝝉)  follows a normal uncertainty 

distribution with a mean of 𝑎0 +∑ 𝑎𝑖𝑒𝑖
𝑛
𝑖=1   and a standard 

deviation of ∑ |𝑎𝑖|𝜎𝑖
𝑛
𝑖=1 . Then the distribution function of 𝐺(𝝉) 

is 

𝛹(𝑥) = (1 + 𝑒𝑥𝑝 (
𝜋(𝑎0+∑ 𝑎𝑖

𝑛
𝑖=1 𝑒𝑖−𝑥)

√3∑ |𝑎𝑖|
𝑛
𝑖=1 𝜎𝑖

))
−1

,  𝑥 ∈ ℝ        (7) 

Therefore, the belief reliability can be calculated as 

𝑅𝐵 = 1 −Ψ(0) = 1 − (1 + 𝑒𝑥𝑝 (
𝜋(𝑎0 + ∑ 𝑎𝑖

𝑛
𝑖=1 𝑒𝑖)

√3∑ |𝑎𝑖|
𝑛
𝑖=1 𝜎𝑖

))

−1

 

= 1 − (1 + 𝑒𝑥𝑝 (
𝜋𝛾

√3
))

−1

.  (8) 

 

The theorem is thus proved. 

Remark 1 The 𝛾 is called a quantile index because its value 

can be regarded as a quantile of the standard normal distribution 

in terms of 𝑅𝐵  when 𝐺  is a linear function. Specifically, 

𝛷𝑠𝑡(−𝛾) = 1 − 𝑅𝐵 , where 𝛷𝑠𝑡  represents the distribution 

function of a standard normal uncertain variable. 

Remark 2 The belief reliability 𝑅𝐵 of a product with a linear 

performance margin function is positively correlated with its 

belief reliability quantile index 𝛾. 

3.2 FOBRA method 

In this section, we develop a calculation method for BRQI to 

estimate the product belief reliability with performance margin 

function. Generally, when the performance margin function 𝐺 

is a linear function with respect to 𝝉, the BRQI can be calculated 

directly according to Theorem 2, and the belief reliability can 

be easily calculated by Theorem 4. For the nonlinear case, the 

calculation of BRQI involves solving complex multiple 

integrals, which is extremely difficult in many cases. To handle 

this, we tend to use the first-order Taylor expansion of the 

function 𝐺 to acquire an approximate BRQI.  

Because the uncertainty distributions of elements in 𝝉 may 

be in different scales, in this paper, the normal uncertain 

variables 𝜏𝑖(𝑖 = 1,2⋯ , 𝑛)  are first unified to a standard 

uncertain space using Equation (1). Then, an expansion point on 

the 𝐺  can be suggested with the standardized performance 

margin function. 

Definition 9 (Standardized performance margin function)  

Let 𝐺(𝝉)  be the performance margin function with respect to  

a normal uncertain vector 𝝉 = (𝜏1, 𝜏2, ⋯ , 𝜏𝑛) . Then, the 

equivalent performance margin function 𝐺(𝝉)  with respect to  

a standard normal uncertain vector 𝝉 = (𝜏1, 𝜏2, ⋯ , 𝜏𝑛) is called 

the standardized performance margin function. 

Theoretically, all the points on the surface of 𝐺(𝝉) = 0 can 

be the Taylor expansion point of 𝐺(𝝉), but not all the results 

with an arbitrary expansion points can cover the linear character 

of the function 𝐺. Therefore, we make the following suggestion. 

Let 𝐺(𝝉) be a standardized performance margin function of 

a product, then the point on surface 𝐺(𝝉) = 0 with the closest 

distance to the origin point is suggested to be the expansion 

point for 𝐺 . Coincidentally, the above expansion point has  

a same geometric meaning in the Cartesian coordinate system 

with Most Probable Point (MPP) [21]. In this regard, the search 

of this point can be implemented using the HLRF algorithm [9, 

25]. Since the algorithm is to acquire the point that can check 

the belief degree of being reliable, we call this point as the belief 

degree checking point (BDCP). 

Proposition 1 Let 𝐺(𝝉) be the performance margin function 

of a product with a standardized performance margin function 

𝐺(𝝉) . If  𝐺𝐿(𝝉
∗) = 𝑏0 + ∑ 𝑏𝑖𝜏𝑖

∗𝑛
𝑖=1   is the first order Taylor 
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expansion of 𝐺(𝝉)  at BDCP, then the BRQI can be 

approximated by 

𝛾 =
𝑏0

∑ |𝑏𝑖|
𝑛
𝑖=1

.      (9) 

Proof Let 𝐺𝐿(𝝉
∗)  be the inverse transformed function of 

𝐺𝐿(𝝉
∗)  in the original uncertainty space, where 𝝉∗ =

(𝜏1
∗, 𝜏2

∗, ⋯ , 𝜏𝑛
∗)  with 𝜏𝑖

∗~𝒩(𝑒𝑖
∗, 𝜎𝑖

∗) . Then, 𝐺𝐿(𝝉
∗)  is just a first 

order Taylor expansion of 𝐺(𝝉) at 
*
τ , which can be regarded 

as the approximation of 𝐺(𝝉) . In other words, the BRQI of 

𝐺𝐿(𝝉
∗) can be used to approximate the BRQI of 𝐺(𝝉). 

If we write 𝐺𝐿(𝝉
∗) as 

𝐺𝐿(𝝉
∗) = 𝑎0 + ∑ 𝑎𝑖

𝑛
𝑖=1 𝜏𝑖

∗,  (10) 

then according to Equation (1), we have 

𝑏0 = 𝑎0 +∑ 𝑎𝑖
𝑛
𝑖=1 𝑒𝑖

∗,   (11) 

𝑏𝑖 = 𝑎𝑖𝜎
∗.        (12) 

According to Definition 8, the BRQI in terms of 𝐺𝐿(𝝉
∗) can 

be calculated as 

𝛾𝐿 =
𝐸[𝐺𝐿(𝛕

∗)]

√𝑉[𝐺𝐿(𝛕
∗)]
=

𝑎0+∑ 𝑎𝑖
𝑛
𝑖=1 𝑒𝑖

∗

∑ |𝑎𝑖|
𝑛
𝑖=1 𝜎𝑖

∗ =
𝑏0

∑ |𝑏𝑖|
𝑛
𝑖=1

,  (13) 

which is the approximation of 𝛾 for 𝐺(𝝉).  

Based on the above analysis, the first-order belief reliability 

analysis (FOBRA) method for an arbitrary performance margin 

function can be summarized in Fig. 1. For the linear case, it is 

straightforward to calculate the BRQI as well as the belief 

reliability. For the nonlinear case, the BDCP is first obtained by 

the iterative operation of HLRF algorithm, then the performance 

margin function is linearized by first order Taylor expansion on 

BDCP, and thus the approximate BRQI as well as the belief 

reliability can be obtained. 

 

 

Fig. 1. Flow chart of the FOBRA method. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 2, 2023 

 

Obviously, FOBRA method avoids multiple integration 

operations as well as large-scale sampling operations, thereby 

ensuring that it can achieve a rapid analysis of belief reliability 

for products affected by epistemic uncertainty. In addition, 

FOBRA method guarantees a certain evaluation accuracy, 

especially when the performance margin function is weakly 

nonlinear. 

In addition, the equivalent normalization method is 

introduced for cases where the basic variables do not follow 

normal uncertainty distributions. Equivalent normalization 

means replacing the original distribution with a normal 

distribution so that the original distribution has the same 

cumulative distribution function value and the same derivative 

value at the BDCP as that normal distribution. Assume that 

𝛹(𝑥) is the original non-normal distribution function of a basic 

variable, 𝜏∗  is the belief degree checking point, 𝛷(𝑥)  is the 

equivalent normal distribution function with unknown 𝑒 and 𝜎,  

𝛹 ′(𝑥)  and 𝛷′(𝑥)  are the derived functions of 𝛹(𝑥)  and 𝛷(𝑥) 

respectively. Then, 𝑒  and 𝜎  can be obtained by solving the 

following system of equations: 

{
 
 

 
 𝛹(𝜏∗) = 𝛷(𝜏∗) = (1 + 𝑒𝑥𝑝 (

𝜋(𝑒−𝜏∗)

√3𝜎
))

−1

,

𝛹′(𝜏∗) = 𝛷′(𝜏∗) =
𝜋 𝑒𝑥𝑝(

𝜋(𝑒−𝜏∗)

√3𝜎
)

√3𝜎(1+𝑒𝑥𝑝(
𝜋(𝑒−𝜏∗)

√3𝜎
))
2 .

 (14) 

After acquiring the parameters, the obtained normal distribution 

function 𝛷(𝑥) can be used to replace the original distribution 

𝛹(𝑥) for FOBRA. 

4. Belief reliability-based design optimization models 

This section will propose belief reliability-based design 

optimization (BRBDO) models as well as solving methods. 

According to different trade-off strategies between input 

resources and reliability, two types of BRBDO models are 

proposed. The notations used in this section are as follows. 

    𝐶: cost function indicating the resource investment of the 

product, 

    𝑿: vectors of design-related uncertain variables, 

    𝑷: vectors of design-independent uncertain variables, 

    𝒅: design vector (the vector of expected values of 𝑿), 

    𝐺𝑘: k-th performance margin function of the product, 

    𝐶𝑡: specified input resource limit, 

    𝑅𝑘
𝑡  : specified minimum belief reliability for the k -th 

performance, 

    𝛾𝑘
𝑡: specified minimum quantile index corresponding to 

the belief reliability for the k -th performance, 

    𝒅𝐿: lower tolerance limit of the design vector, 

    𝒅𝑈: upper tolerance limit of the design vector, 

    𝑚: total number of product performance margin functions, 

    𝑛𝑋: dimension of 𝑿, 

    𝑛𝑃: dimension of 𝑷, 

    𝛷𝑖: uncertainty distribution of 𝑋𝑖, 

    𝛹𝑖: uncertainty distribution of 𝑃𝑖 , 

    𝛷𝑖
−1: inverse uncertainty distribution of 𝑋𝑖, 

    𝛹𝑖
−1: inverse uncertainty distribution of 𝑃𝑖 . 

4.1 Resource minimum BRBDO model 

In general, designers want to invest as few resources as possible 

for a product with specified reliability design goals. The design 

optimization model corresponding to this optimization strategy 

is called the resource minimum design optimization model in 

this paper. The model can be expressed as Model 1 under the 

uncertain measure. 

Model 1: 

{
 
 

 
 min𝒅

   𝐶(𝐝)

subject to

        ℳ{𝐺𝑘(𝑿, 𝑷) ≥ 0} ≥ 𝑅𝑘
𝑡 , 𝑘 = 1,2,⋯ ,𝑚 

        𝒅𝐿 ≤ 𝒅 ≤ 𝒅𝑈 .

 (15) 

 (1) Monotonic case 

When the performance margin functions in the model are 

strictly monotonic with respect to 𝑿  and 𝑷 , where 

𝑋1, 𝑋2, ⋯ , 𝑋𝑛𝑋 , 𝑃1, 𝑃2, ⋯ , 𝑃𝑛𝑃  are independent uncertain 

variables, the reliability constraints of Model 1 can be 

transformed into an equivalent expression according to 

uncertainty theory. Specifically, if the performance margin 

function 𝐺𝑘(𝑿, 𝑷)  is continuous, and strictly increasing with 

respect to 𝑋1, 𝑋2, ⋯ , 𝑋𝑟 , 𝑃1, 𝑃2, ⋯ , 𝑃𝑠  and strictly decreasing 

with respect to 𝑋𝑟+1, 𝑋𝑟+2, ⋯ , 𝑋𝑛𝑋 , 𝑃𝑠+1, 𝑃𝑠+2,⋯ , 𝑃𝑛𝑃  , then 

Model 1 can be equivalently expressed as Model 2. 

Model 2: 

{
 
 
 

 
 
 
min
𝒅
   𝐶(𝐝)

subject to

         𝐺𝑘(𝛷1
−1(𝑅𝑘

𝑡),⋯ ,𝛷𝑟
−1(𝑅𝑘

𝑡 ), 𝛷𝑟+1
−1 (1 − 𝑅𝑘

𝑡 ),⋯

              𝛷𝑛𝑋
−1(1 − 𝑅𝑘

𝑡 ),𝛹1
−1(𝑅𝑘

𝑡 ),⋯ ,𝛹𝑠
−1(𝑅𝑘

𝑡 ),𝛹𝑠+1
−1 (1 − 𝑅𝑘

𝑡 ),⋯ ,

              𝛹𝑛𝑃
−1(1 − 𝑅𝑘

𝑡 )) ≤ 0,  𝑘 = 1,2,⋯ ,𝑚

         𝒅𝐿 ≤ 𝒅 ≤ 𝒅𝑈.

   (16) 

Obviously, Model 2 can be solved by various non-linear 

optimization algorithms as it is a deterministic optimization 
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model. 

(2) Non-monotonic case 

In the situation where the performance margin functions are 

non-monotonic (or the property of monotony is difficult to 

identify), solving the belief reliability constraint in Model 1 

would be significantly hard. Therefore, the FOBRA method 

proposed in Section 3 is utilized to generate a new belief 

reliability constraint. Since the BRQI is strictly positively 

correlated with the estimated belief reliability in the FOBRA 

method, the BRQI can be used to replace the belief reliability 

constraint in Model 1, which is written as 

𝛾𝑘(𝑿, 𝑷) ≥ 𝛾𝑘
𝑡 ,  𝑘 = 1,2,⋯ ,𝑚,  (17) 

where 𝛾𝑘
𝑡  can be directly transformed from 𝑅𝑘

𝑡  as 

𝛾𝑘
𝑡 =

√3

𝜋
𝑙𝑛((1 − 𝑅𝑘

𝜄 )−1 − 1).   (18) 

Based on the above replacement, solving Model 1 requires 

executing FOBRA during each iteration to guarantee the 

satisfaction of the constraints, and thus the optimal result can be 

obtained through performing overall optimization in the outer 

loop. A typical solving method is to utilize the classical genetic 

algorithm by imposing FOBRA-based reliability constraints in 

the selection operator. 

4.2 Reliability maximum BRBDO model 

In practical engineering, designers also face another 

optimization problem, that is, how to reasonably allocate 

resources for the product design to maximize reliability under 

given resource constraints. The design optimization model 

corresponding to this optimization strategy is called the 

reliability maximum BRBDO model in this paper. The model 

can be expressed as Model 3 under the uncertain measure. 

 Model 3: 

{
 
 

 
 max𝒅

   ⋀ ℳ{𝐺𝑘(𝑿, 𝑷) ≥ 0}𝑚
𝑘=1

subject to

        𝐶(𝒅) ≤ 𝐶𝑡  

        𝒅𝐿 ≤ 𝒅 ≤ 𝒅𝑈 .

  (19) 

 (1) Monotonic case 

When the performance margin functions in the model are 

strictly monotonic with respect to 𝑿  and 𝑷 , where 

𝑋1, 𝑋2, ⋯ , 𝑋𝑛𝑋 , 𝑃1, 𝑃2, ⋯ , 𝑃𝑛𝑃  are independent uncertain 

variables, the objective function of Model 3 can be transformed 

into an equivalent expression according to uncertainty theory. 

Specifically, if the performance margin function 𝐺𝑘(𝑿, 𝑷)  is 

continuous, and strictly increasing with respect to 

𝑋1, 𝑋2, ⋯ , 𝑋𝑟 , 𝑃1, 𝑃2, ⋯ , 𝑃𝑠  and strictly decreasing with respect 

to 𝑋𝑟+1, 𝑋𝑟+2, ⋯ , 𝑋𝑛𝑋 , 𝑃𝑠+1, 𝑃𝑠+2, ⋯ , 𝑃𝑛𝑃, then Model 3 can be 

equivalently expressed as Model 4. 

Model 4: 

{
 
 
 

 
 
 
max
𝒅
   ⋀ {𝛼𝑘 ∣ 𝐺𝑘(Φ1

−1(1 − 𝛼𝑘),⋯ ,Φ𝑟
−1(1 − 𝛼𝑘),

𝑚
𝑘=1

                       Φ𝑟+1
−1 (𝛼𝑘),⋯ ,Φ𝑛𝑋

−1(𝛼𝑘),Ψ1
−1(1 − 𝛼𝑘),⋯

                       Ψ𝑠
−1(1 − 𝛼𝑘),Ψ𝑠+1

−1 (𝛼𝑘),⋯ ,Ψ𝑛𝑃
−1(𝛼𝑘)) = 0}

subject to

         𝐶(𝒅) ≤ 𝐶𝑡

         𝒅𝐿 ≤ 𝒅 ≤ 𝒅𝑈.

 (20) 

Apparently, Model 4 is also a deterministic optimization 

model that can be solved by commonly used optimization 

algorithms. 

(2) Non-monotonic case 

Similarly, in non-monotonic cases, FOBRA method is 

utilized to analyze the belief reliability in each iteration. 

Considering the positive correlation between the BRQI and 

belief reliability, the BRQI is used to replace the belief 

reliability objective function in Model 3, i.e., the objective 

function is replaced by 

⋀ 𝛾𝑘
𝑚
𝑘=1 .   (21) 

Then, a typical solving method of the new Model 3 could be the 

genetic algorithm with a fitness function established using 

FOBRA method. 

5. Case study 

5.1 Cantilever beam structure 

In this case study, a cantilever beam structure (as shown in Fig. 

2) with a single monotonic performance margin function is 

studied. The reliability analysis of the structure was first 

performed by the FOBRA method in Section 5.1.1, which 

verified the accuracy of the FOBRA method. Then, resource 

minimum design optimization and reliability maximum design 

optimization of the structure are studied respectively in Section 

5.1.2 and 5.1.3 to show the accuracy and efficiency of the 

FOBRA-based design optimization method. 

 

 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 2, 2023 

 

 

Fig. 2. Cantilever beam structure. 

5.1.1 Reliability analysis of the cantilever beam structure 

In this case, we only consider the maximum displacement of the 

cantilever beam structure under the load P as the key 

performance. Then, the performance margin function can be 

written as: 

𝐺 = 𝐷 − (
4𝐿3

𝐸𝑥1𝑥2
) × √(

𝑝1

𝑥2
2)
2

+ (
𝑝2

𝑥1
2)
2

,        (22) 

where the length of the beam L=100 in, the allowable maximum 

displacement D=2.5 in, and the rest of the parameters are 

regarded as uncertain variables because of epistemic uncertainty, 

whose meaning and distribution information are shown in Table 

1. As an additional note, the mean and standard deviation of the 

uncertain variables can be obtained by the graduation formula 

[36]. 

Table 1 Uncertain variable information of the cantilever beam 

structure 

Uncertain variable Distribution type Mean Std. dev 

Load lateral 𝑝1 (lb) Normal 1000 100 

Load vertical 𝑝2 (lb) Normal 500 100 

Young’s modulus 𝐸 (psi) Normal 29×106 1.45×106 

Width 𝑥1 (in) Normal 3 0.3 

Thickness 𝑥2 (in) Normal 4 0.4 

According to the FOBRA algorithm, BRQI of the cantilever 

beam structure is 𝛾 = 1.5499. According to Equation (4), the 

structural belief reliability estimated by BRQI can be obtained 

as  

𝑅estimated = 1 − (1 + 𝑒𝑥𝑝 (
𝜋𝛾

√3
))

−1

= 0.9433.  

Further, since the performance margin function is strictly 

monotonic with respect to all uncertain variables, the theoretical 

solution of its belief reliability can also be calculated by the 

operational law of uncertainty theory as 

 

 

𝑅theory =ℳ{𝐺 ≥ 0} 

= 𝛼| {𝐷 − (
4𝐿3

𝛷𝐸
−1(1 − α) ∙ 𝛷𝑥1

−1(1 − α) ∙ 𝛷𝑥2
−1(1 − α)

) 

                         √(
𝛷𝑝1
−1(α)

𝛷𝑥2
−1(1 − α)2

)

2

+ (
𝛷𝑝2
−1(α)

𝛷𝑥1
−1(1 − α)2

)

2

= 0} 

= 0.9430. 

Among them, 𝛷𝐸
−1, 𝛷𝑥1

−1, 𝛷𝑥2
−1, 𝛷𝑝1

−1 and 𝛷𝑝2
−1 are the inverse 

distribution functions of 𝐸, 𝑥1, 𝑥2, 𝑝1 and 𝑝2, respectively. The 

relative error between the approximate solution obtained by 

FOBRA and the theoretical analytical solution is 0.0318%. 

In terms of computation time, the FOBRA algorithm takes 

0.05 milliseconds and the analytical solution takes 0.04 seconds 

under the same hardware configuration. In addition, the 

uncertain simulation algorithm proposed in [35] takes 13.52 

seconds at a sampling size of 1e5, which is much higher than 

the previous two. Obviously, FORBA algorithm is much more 

efficient than uncertain simulation algorithm. This gap will be 

even larger in design optimization due to the large number of 

calls to the reliability analysis process. 

In order to further verify the accuracy and robustness of 

FOBRA, the reliability assessment results of the structure are 

investigated when the parameters vary within a certain range. 

The calculation results of BRQI, the theoretical value of 

reliability, and the estimated value of reliability are shown in 

Fig. 3. Among them, 𝑑1 and 𝑑2 are the mean values of 𝑥1 and 

𝑥2 , the theoretical value is calculated according to the 

operational law of uncertainty theory, and the estimated value is 

the approximate belief reliability calculated by Equation (4). It 

can be found that the FOBRA method is very accurate at low 

levels of structural reliability. As the reliability level of the 

structure becomes higher, the FOBRA method slightly 

overestimates the belief reliability of the structure. Overall, the 

accuracy and robustness of FOBRA is satisfactory. 
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Fig. 3. Belief reliability analysis results of the cantilever beam. 

5.1.2 Resource minimum design optimization 

The resource minimum design optimization problem of the 

cantilever beam structure is first studied. The FOBRA-based 

resource minimum design optimization model can be 

established as follows: 

{
  
 

  
 
min   𝐴 = 𝑑1 ⋅ 𝑑2
subject to 

         𝛾(𝑥1, 𝑥2, 𝑝1, 𝑝2, 𝐸, 𝐷, 𝐿) ≥ 𝛾𝑡

         𝛾𝑡 =
√3

𝜋
𝑙𝑛((1 − 𝑅𝑡)−1 − 1)

         0 ≤ 𝑑1 ≤ 100
         0 ≤ 𝑑2 ≤ 100.

         (23) 

In this problem, the design variables are the mean values of 

𝑥1  and 𝑥2  represented as 𝑑1  and 𝑑2 , which are required to be 

not greater than 100 in, the constraint is the specified quantile 

index acquired from the specified belief reliability 𝑅𝑡, and the 

objective function is the cross-sectional area of the cantilever 

beam (denoted as A). 

Table 2 shows the optimization results of the above model 

under different 𝑅𝑡. Because the performance margin function of 

the product is strictly monotonic, it can be solved by the 

equivalent deterministic model (refer to Model 2). In Table 2, 

the optimal solution obtained by this method is used as the 

reference optimal solution to evaluate the relative error.  

Table 2. Results of the resource minimum design optimization of the cantilever beam.  

𝑅𝑡 
Optimal solution via FOBRA Optimal solution via equivalent model 

Relative error 
d1(in) d2(in) A(in2) d1(in) d2(in) A(in2) 

0.999 3.814 4.199 16.02 3.993 5.140 20.52 21.93% 

0.99 3.372 4.327 14.59 3.415 4.524 15.45 5.57% 

0.98 3.285 4.109 13.50 3.206 4.385 14.06 3.98% 

0.97 3.230 3.979 12.85 3.071 4.325 13.28 3.24% 

0.95 3.133 3.838 12.02 2.952 4.161 12.28 2.12% 

0.9 2.955 3.673 10.85 2.865 3.812 10.92 0.64% 

The results also indicate that the resource minimum optimal 

solutions solved via FOBRA are comparatively accurate when 

the specified belief reliability is low, and there may be a larger 

error when the specified belief reliability becomes higher. This 

is mainly because the optimization process with highly 

specified belief reliability may enlarge the error caused by 
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nonlinearity in FOBRA, thus affecting the precision. 

In terms of the time cost, under the same hardware 

configuration and genetic algorithm parameter setting, the 

average solution time via FOBRA is 0.12 seconds, while the 

average solution time via the equivalent deterministic model is 

83.03 seconds. Results show that the FOBRA-based design 

optimization model has significantly higher solution efficiency. 

The main reason for the efficiency gap is that the reliability 

assessment in the equivalent deterministic model solution 

requires solving transcendental equations, which is much more 

computationally intensive than FOBRA. 

5.1.3 Reliability maximum design optimization 

The reliability maximum design optimization problem of the 

cantilever beam structure is also studied. The FOBRA-based 

reliability maximum design optimization model can be 

established as follows: 

{
 
 

 
 
max    𝛾(𝑥1, 𝑥2, 𝑝1, 𝑝2, 𝐸, 𝐷, 𝐿) 
subject to 

         𝑑1 ⋅ 𝑑2 ≤ 𝐴𝑡

          0 ≤ 𝑑1 ≤ 100
          0 ≤ 𝑑2 ≤ 100.

          (24) 

In this problem, the design variables are the mean values of 

𝑥1  and 𝑥2  represented as 𝑑1  and 𝑑2 , which are required to be 

not greater than 100 in, the constraint is the specified cross-

sectional area denoted as 𝐴𝑡, and the objective function is the 

BRQI of the cantilever beam. 

Table 3 shows the optimization results of the above model 

under different 𝐴𝑡. Similar to the previous problem, the results 

of the equivalent deterministic model are also used as the 

reference optimal solution. Table 3 indicates that the optimal 

solutions solved via FOBRA are very accurate, with relative 

errors of less than 1%.  

Table 3. Results of the reliability maximum design optimization of the cantilever. 

𝐴𝑡 (in2) 
Optimal solution via FOBRA Optimal solution via equivalent model 

Relative error 
d1(in) d2(in) γ R d1(in) d2(in) R 

11 2.747 4.004 1.243 0.9050 2.896 3.798 0.9038 0.13% 

12 3.114 3.854 1.616 0.9494 2.981 4.025 0.9429 0.69% 

13 3.220 4.038 1.970 0.9727 3.070 4.235 0.9657 0.72% 

14 3.320 4.217 2.320 0.9853 3.258 4.297 0.9796 0.58% 

15 3.391 4.423 2.682 0.9923 3.496 4.290 0.9873 0.51% 

16 3.792 4.217 3.669 0.9987 3.501 4.570 0.9923 0.64% 

In addition, under the same hardware configuration and genetic 

algorithm parameter setting, the average solution time via 

FOBRA is 0.20 seconds, while the average solution time via the 

equivalent deterministic model is 38.40 seconds. The efficiency 

of optimization based on the FORBA algorithm still has a 

significant advantage. 

5.2 Reliability design optimization of vehicle side impact 

In order to verify that the proposed method is applicable to 

complex non-monotonic situations, a multi-dimensional vehicle 

side impact design optimization problem is studied in this case 

[31].  

The design objective is to minimize the vehicle weight (denoted 

as 𝑊 ) under given safety constraints of the side impact. The 

information of all variables and several deterministic 

parameters (denoted as 𝑥1~𝑥11) are listed in Table 4. The design 

variables are the mean values of 7 variables (denoted as 𝑑1~𝑑7) 

that are related to weight and safety. And they all have 

corresponding design upper and lower bounds. Because of the 

limitation of data and knowledge of these variables and 

parameters, they are regarded as normal uncertain variables in 

this paper.  

Table 4. Parameters of the vehicle side impact design optimization problem. 

Variable Std. dev Lower limit Mean value Upper limit 

B-Pillar inner x1 0.03 0.5 d1 3 

B-Pillar reinforcement x2 0.03 0.45 d2 2.7 

Floor side inner x3 0.03 0.5 d3 3 

Cross members x4 0.03 0.5 d4 3 

Door beam x5 0.05 0.875 d5 5 

Door belt line reinforcement x6 0.03 0.4 d6 3 
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Variable Std. dev Lower limit Mean value Upper limit 

Roof rail x7 0.03 0.4 d7 3 

Parameter Std. dev Mean value 

Material of B-Pillar inner x8 0.006 0.345 

Material of floor side inner x9 0.006 0.192 

Barrier height x10 10 0 

Barrier hitting position x11 10 0 

The finite element model shown in Fig.4 is used to simulate the 

side impact, where the vehicle was impacted by an obstacle with 

an initial velocity of 33 mph. 

 

Fig.4. Finite element model of vehicle side impact. [31] 

Using a series of response surface functions obtained by finite 

element analysis as the performance margin functions of the 

vehicle side impact structure, the design optimization model can 

be established as follows: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
min    𝑊 = 1.98 + 4.9𝑑1 + 6.67𝑑2 + 6.98𝑑3 +
                      4.01𝑑4 + 1.78𝑑5 + 2.73𝑑7
subject to 

         ℳ{𝐹AL ≤ 1kN} ≥ 𝑅𝑡

         ℳ{𝐷up ≤ 32cm} ≥ 𝑅𝑡

         ℳ{𝐷mid ≤ 32cm} ≥ 𝑅𝑡

         ℳ{𝐷low ≤ 32cm} ≥ 𝑅𝑡

         ℳ{𝑉𝐶up ≤ 0.32cm} ≥ 𝑅𝑡

         ℳ{𝑉𝐶mid ≤ 0.32cm} ≥ 𝑅𝑡

         ℳ{𝑉𝐶low ≤ 0.32cm} ≥ 𝑅𝑡

         ℳ{𝐹ps ≤ 4.0kN} ≥ 𝑅
𝑡

         ℳ{𝑉𝐵−Pillar ≤ 9.9m/s} ≥ 𝑅𝑡

         𝑑𝑖
𝐿 ≤ 𝑑𝑖 ≤ 𝑑𝑖

𝑈, 𝑖 = 1,2,⋯ ,7,

(25) 

where 

 

𝐹AL = 1.16 − 0.3717𝑥2𝑥4 − 0.00931𝑥2𝑥10 − 0.484𝑥3𝑥9

+ 0.01343𝑥6𝑥10 

𝐷up = 28.98 + 3.818𝑥3 − 4.2𝑥1𝑥2 + 0.0207𝑥5𝑥10

+ 6.63𝑥6𝑥9 − 7.77𝑥7𝑥8 + 0.32𝑥9𝑥10 

𝐷mid = 33.86 + 2.95𝑥3 + 0.1792𝑥10 − 5.057𝑥1𝑥2 − 11𝑥2𝑥8

− 0.0215𝑥5𝑥10 − 9.98𝑥7𝑥8 + 22𝑥8𝑥9 

𝐷low = 46.36 − 9.9𝑥2 − 12.9𝑥1𝑥8 + 0.1107𝑥3𝑥10 

𝑉𝐶up = 0.261 − 0.0159𝑥1𝑥2 − 0.188𝑥1𝑥8 − 0.019𝑥2𝑥7

+ 0.0144𝑥3𝑥5 

𝑉𝐶mid = 0.214 + 0.00817𝑥5 − 0.131𝑥1𝑥8 − 0.0704𝑥1𝑥9

+ 0.03099𝑥2𝑥6 + 0.018𝑥2𝑥7 + 0.0208𝑥3𝑥8

+ 0.121𝑥3𝑥9 − 0.00364𝑥5𝑥6

+ 0.0007715𝑥5𝑥10 − 0.0005354𝑥6𝑥10

+ 0.00121𝑥8𝑥11 + 0.00184𝑥9𝑥10

− 0.02𝑥2𝑥2 

𝑉𝐶low = 0.74 − 0.61𝑥2 − 0.163𝑥3𝑥8 + 0.001232𝑥3𝑥10

− 0.166𝑥7𝑥9 + 0.227𝑥2𝑥2 

𝐹ps = 4.72 − 0.5𝑥4 − 0.19𝑥2𝑥3 − 0.0122𝑥4𝑥10

+ 0.009325𝑥6𝑥10 + 0.000191𝑥11𝑥11 

𝑉B−Pillar = 10.58 − 0.674𝑥1𝑥2 − 1.95𝑥2𝑥8 + 0.02054𝑥3𝑥10

− 0.0198𝑥4𝑥10 + 0.028𝑥6𝑥10. 

(26) 

Since the performance margin functions in the optimization 

model are all non-monotonic functions, the model cannot be 

transformed into an equivalent deterministic model. In addition, 

the computational cost of using an uncertain simulation 

algorithm to calculate complex multi-dimensional constraints 

would be unbearable. Therefore, the FOBRA-based design 

optimization method proposed in this paper would be a more 

suitable option. 

According to the resource minimum BRBDO model in non-

monotonic case, the reliability constraints in the model are 

transformed into BRQI constraints calculated by FOBRA with 

𝑅𝑡 = 0.99. The optimal design solution acquired by the genetic 

algorithm is shown in Table 5. 

 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 2, 2023 

 

Table 5. Optimization result of the vehicle side impact structure. 

Method Design solution d W 

Belief reliability-

based design 

optimization 

(0.839,1.434,0.5,1.368,0.875,1.589,0.4) 27.2790 

Probabilistic 

analysis-based 

design 

optimization 

(0.592,1.337,0.5,1.273,0.875,1.665,0.4) 25.0374 

Furthermore, in order to show the effect of the category of 

uncertainty on design optimization, the optimal solution of the 

design optimization problem based on probabilistic analysis is 

also computed under the same parameter setting with normal 

probability distributions. The result is obtained by using FORM 

to calculate reliability constraints and genetic algorithm for 

outer optimization, as shown in Table 5. The results indicate that 

under the same parameter condition, the optimal solution of 

BRBDO requires more resources (minimum weight of 27.2790) 

than probabilistic analysis-based design optimization 

(minimum weight of 25.0374). In other words, more design 

margin is required when the product design is influenced by 

epistemic uncertainty. This is mainly because the consideration 

of epistemic uncertainty usually makes us inclined to make 

more conservative decisions, thus allowing the design solution 

to sacrifice some weight to ensure the level of reliability. 

6. Conclusion 

Considering the advantages of uncertainty theory in dealing 

with epistemic uncertainty, this paper studies the reliability 

design optimization problem for products affected by epistemic 

uncertainty on the basis of belief reliability theory. The main 

conclusions are as follows: 

1) Based on the definition of belief reliability quantile index,  

a method for rapid reliability approximate assessment of 

products affected by epistemic uncertainty, FOBRA, is 

proposed. It has been proved that the method can 

effectively assess the belief reliability of products with 

high accuracy. 

2) Considering different trade-off strategies, FOBRA-based 

resource minimum design optimization model and 

reliability maximum design optimization model are 

proposed respectively. The cases show that FOBRA-

based reliability maximum design optimization model 

has very high accuracy, while FOBRA-based resource 

minimum design optimization model has high accuracy 

only at low reliability levels. 

3) Both FOBRA and the corresponding design optimization 

methods have very high computational efficiency, 

representing a huge saving in computational time over 

other methods. 
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